FHWS Building 5, Ignaz-Schön-Straße 11, 97421 Schweinfurt

Machine Learning - Examination number: 9958243S

Machine Learning studies concepts and algorithms which enable computers to detect patterns and structures automatically.

Table of contents

  1. Introduction
  2. Concepts of machine learning
    • Methods of machine learning
    • Training data and test data
    • Merit function and learning rate
    • Examples
  3. Basic concepts
    • Vector, matrix, norm
    • Introduction to Python
    • Mathematical optimization
    • Statistical concepts
  4. Introduction to neural networks
    • Andrei Kolmogorov and Hilbert’s 13th problem
    • Concepts and algorithms
    • Examples
  5. Supervised learning
    • Regression problems
    • Classification problems
    • Support Vector Machines (SVM)
    • Examples
  6. Unsupervised learning
    • Cluster analysis
    • Principal component analysis (PCA)
    • Examples

Ein deutschsprachiges Skript zur Vorlesung ist vorhanden.

References
[1] C. M. Bishop, Pattern recognition and machine learning, New York: Springer, 2006.
[2] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, New York: Springer, 2017.
[3] S. Russell, P. Norvig, Artificial Intelligence, Boston: Pearson, 2016.

Lecturer: Bittner
Last update: 10.08.2023