Machine Learning - Examination number: 9958243S
Machine Learning studies concepts and algorithms which enable computers to detect patterns and structures automatically.
Table of contents
- Introduction
- Concepts of machine learning
- Methods of machine learning
- Training data and test data
- Merit function and learning rate
- Examples
- Basic concepts
- Vector, matrix, norm
- Introduction to Python
- Mathematical optimization
- Statistical concepts
- Introduction to neural networks
- Andrei Kolmogorov and Hilbert’s 13th problem
- Concepts and algorithms
- Examples
- Supervised learning
- Regression problems
- Classification problems
- Support Vector Machines (SVM)
- Examples
- Unsupervised learning
- Cluster analysis
- Principal component analysis (PCA)
- Examples
Ein deutschsprachiges Skript zur Vorlesung ist vorhanden.
References
[1] C. M. Bishop, Pattern recognition and machine learning, New York: Springer, 2006.
[2] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning, New York: Springer, 2017.
[3] S. Russell, P. Norvig, Artificial Intelligence, Boston: Pearson, 2016.
Lecturer: Bittner
Last update: 10.08.2023